49 research outputs found

    Carbon nanotube materials for aerospace wiring

    Get PDF
    With large amounts of time and money invested in the advancement of aerospace structures, the performance and reliability are crucial factors in the development of new components to extend the lifetime of these spacecrafts. Wires composed of long, highly aligned, and defect-free carbon nanotubes (CNTs) could have a great impact on aerospace, military, and industrial applications which require lightweight and durable electrically conductive materials. Carbon nanotubes represent an ideal material which is not only electrically conductive, but also exhibits resistance to oxidation, radiation tolerance, and mechanical robustness. Highly conductive bulk carbon nanotube wires were drawn to meter lengths using a drawing die process. A series of solvents were investigated as potential lubricants to improve the process as well as the electrical and mechanical properties of the resulting wires. Inorganic and organic chemical doping was used in conjunction with densification to increase the electrical conductivity of the wires, achieving a maximum conductivity of 1.3 x 106 S/m. Temperature dependent electrical conductivity measurements were recorded to evaluate the fundamental electrical conduction mechanism in CNT wires resulting from the doping and densification processes. These measurements indicated that the electron tunneling barrier between adjacent CNTs can be drastically reduced by ionic doping and densification. Furthermore, a novel technique of contacting CNT wires to metals via ultrasonic welding was reported with mechanical and electrical characterization of the welds achieved. Lastly, real world demonstrations of the power and data transmission capabilities of these CNT wires were constructed and tested, specifically a USB cable and coaxial wires

    Self-Replenishing Vascularized Fouling-Release Surfaces

    Get PDF
    Inspired by the long-term effectiveness of living antifouling materials, we have developed a method for the self-replenishment of synthetic biofouling-release surfaces. These surfaces are created by either molding or directly embedding 3D vascular systems into polydimethylsiloxane (PDMS) and filling them with a silicone oil to generate a nontoxic oil-infused material. When replenished with silicone oil from an outside source, these materials are capable of self-lubrication and continuous renewal of the interfacial fouling-release layer. Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectious bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella salina, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.Engineering and Applied Science

    Stability of Surface-Immobilized Lubricant Interfaces under Flow

    Get PDF
    The stability and longevity of surface-stabilized lubricant layers is a critical question in their application as low- and nonfouling slippery surface treatments in both industry and medicine. Here, we investigate lubricant loss from surfaces under flow in water using both quantitative analysis and visualization, testing the effects of underlying surface type (nanostructured versus flat), as well as flow rate in the physiologically relevant range, lubricant type, and time. We find lubricant losses on the order of only ng/cm2 in a closed system, indicating that these interfaces are relatively stable under the flow conditions tested. No notable differences emerged between surface type, flow rate, lubricant type, or time. However, exposure of the lubricant layers to an air/water interface did significantly increase the amount of lubricant removed from the surface, leading to disruption of the layer. These results may help in the development and design of materials using surface-immobilized lubricant interfaces for repellency under flow conditions.Chemistry and Chemical BiologyEngineering and Applied Science

    Replication of obesity and diabetes-related SNP associations in individuals from Yucatán, México

    Get PDF
    The prevalence of type 2 diabetes (T2D) is rising rapidly and in Mexicans is ∼19%. T2D is affected by both environmental and genetic factors. Although specific genes have been implicated in T2D risk few of these findings are confirmed in studies of Mexican subjects. Our aim was to replicate associations of 39 single nucleotide polymorphisms (SNPs) from 10 genes with T2D-related phenotypes in a community-based Mexican cohort. Unrelated individuals (n = 259) living in southeastern Mexico were enrolled in the study based at the University of Yucatan School of Medicine in Merida. Phenotypes measured included anthropometric measurements, circulating levels of adipose tissue endocrine factors (leptin, adiponectin, pro-inflammatory cytokines), and insulin, glucose, and blood pressure. Association analyses were conducted by measured genotype analysis implemented in SOLAR, adapted for unrelated individuals. SNP Minor allele frequencies ranged from 2.2 to 48.6%. Nominal associations were found for CNR1, SLC30A8, GCK, and PCSK1 SNPs with systolic blood pressure, insulin and glucose, and for CNR1, SLC30A8, KCNJ11, and PCSK1 SNPs with adiponectin and leptin (p < 0.05). P-values greater than 0.0014 were considered significant. Association of SNPs rs10485170 of CNR1 and rs5215 of KCNJ11 with adiponectin and leptin, respectively, reached near significance (p = 0.002). Significant association (p = 0.001) was observed between plasma leptin and rs5219 of KCNJ11

    Transcriptoma en mexicanos: metodología para analizar el perfil de expresión genética de gran escala en muestras simultáneas de tejido muscular, adiposo y linfocitos obtenidas en un mismo individuo

    Get PDF
    Describir la metodología de análisis de múltiples trasncritos con técnicas de microarreglo en biopsisas simultáneas de tejido muscular, adiposo y sangre en un mismo individuo, como parte de la estandarización del estudio GEMM (Genética de las enfermedades Metabólicas en México
    corecore